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ABSTRACT And consequently they need to impose very strict and
The manufacturing of propellers comes with geometricaiostly manufacturing tolerances to make sure the newly
variability that lies within predefined tolerances decreedptimum design is not influenced.
by standardized accuracy classes. Although controlled Byis paper presents a ndeteministic methodology that
these tolerances classes, the variation in the design mighows assessing quantitatively the effect of these
result in a degradimn of the expected propeller variabilities, and is applied on the design optimization of
behaviour. a ducted marine propeller. EBhinewly optimization
In a classical deterministic desigptimization, engineers procedure, called RDO, aims at improving the
improve a digital model, without taking into account thesperformancesbut alsoguaranteeing atable behaviour
variations. Hence a new type of optimization method igiven an inputtedariability.
recommended whereby the impact of thenaofacturing Hence, theRDO provides a range of confidence with the
variability, represented by statistical moments, isimulation results and might help future designers in their
minimized. design strategy.
This paper presents a robust reterministic In this work, two operating conditions are studied and the
optimization of a ducted marine propeller mounted on amanufacturing tolerances come from tB© 4842 2015
inland vessel. In this test case, the statistical moments DPRESENTATION OF THE TEST CASE
the propeller diciency are optimized while axial thrust is 1 Back

- s . . . ground
constralned_ and cawtapo_n occurrence is considered. T fe background of the project consists in optimizing a
manufac_tunng uncertainties are derived from the IS ropeller mounted on an inland vessel with a single
geqmetrlc_al tolerances -_(Sass. EVG“F“?‘”_V' a _ro_bust propeller system and twiblade rudder appendes.
optimum is compared with a deterministic optimum
order to underline the benefits of the mdeterministic

design methodology. wd-l"’ 2
Keywords T
Uncertainty — quantification,  probabilistic ~ methods, 558 :
surrogatebased nofdeterministic optimization, - =
manufacturing tolerance$SO 4842 2015 Figure 1: The inland vessel under different loadings.

1 INTRODUCTION Table 1: The main particulars of the inland vessel.

In the reent year, the design time has been drastical\AlSvessel type Tanker- Haz C
reduced thanks to modern computing involving

computational fluid dynamicsCFD) and embedded and | LOAX BE 109.7mx 114 m
automated frameworks for the simulatibased design

optimization SBDO. Nowadays, hydrodynamicSBDO | Deadweight 2810 tons

of a mame propeller is currently run with a unique set o
inputs, such as geometry parameters and operat
conditions. This overwhelming deterministic approac
produces a single valuesponse thanainly drives all the
optimization strategies. But the actual peoating

nﬁear built 2010

1Design draught 2.8m

- : . ) Max draught 3.35m
conditions are subject to uncertainties coming from
manufacturing tolerances, operating conditions and |°m9;)esign speed 5.4 knots (10km/h)
term life cycle involving the slow degradation of
materials because of cavitation or foulidgvare of these | Max speed 6.2 knots (11.5km/h)

variabilities, modern desigrercurrently use tools that
generally do not provide means to assess their impacts.




The inland vessel market will grow at oveb4er cent The working area of the propeller is eventually defined,
from 2017 to 2024 (Insights global market2018), and therefore the blade area ratio and the required pitch.
justifying the recent trend at improving the performanceghen, the ship réstance is computed in order to extract
of such vessel for economicand ecological reasons the wake field(cf. fig.2). This field helps to finalize the
(Sihn et al 2015)As a consequence, the optimization oflesign loop by adjusting the section profile, and more
the propulsion device could be an achievable solution fehapedetermining parameters. Hence the optimization
naval architects. procedure can be applied during those finaatiens in

2.2 Presentation of the ducted marine propeller the design process.
The propeller studied is a fixed pitch ducted @itgy Table 2: The main particulars of the propeller.

where the main characteristics are definethbie 2 Type Fixed pitch
Diameter 1.7 m (2.08 m with duct)
Number of blades 5
Mean pitch 2.251m
3 FAY Chord length at 0.7R 0.68 m
Figure 2: Nominal wake of the ship at design speed.
Revolutions/sec 5.385 rps

According tothe BAW (2016)all newly designed inland
vessels have propellers with a nozzle. The main reasomiI®ETERMINISTIC OPTIMIZATION FRAMEWORK
the capacity to carry onigher thrust loading with better 3.1 General principle

efficiency.

The most straightforward optimization approach is to
sample the design space and @D at the selected
point, and try to find a design for which the performances
are better. However, each optimization iteration requires a
CFD computation, increasing the time and computation
power. In this manner, an efficient methodology is
implemented in FNEE/ Desi gn3D, and
building blocks, presxploration of the design space,
performed by adesign of experiment¢DoE), and a
The studied case is a replacement propeller for the vesselrrogate assisted optimization.

No design specifications were formulated for the nozzle, > pesign of experiment for design space exploration

because it is embedded in tall of the ship (cffig.4). The first step consists in pexploring the design space,

= by using a nearandomDoE. This preexploration allows
creating a metamodel or a response surface that is going
to be used during the optimization. For that purpose a
latin hypercube sampling_HS) is applied to sample the
desgn space.

Figure 3: The ducted propeller with and without the nozzle.

Design of experiments using LHS

Figure 4: Final propeller mounted on the éhip, the duct is

1.0, Design of experiments using LHS

part of the hull. os| * ey . ) .
In general practice, this type of propellers is based u or > . et é“] oy
the Wageningen kaeries ducted propellers. Hence, t\ig‘: : : Lte . o | |
empirical formulas, based odK/K, determine thrust zos P . e, T A
and power as a function of speeds and en¢ o, . EE oA .t e
characteristicsThe coefficiens J-K/K, are defined as ° <« . 5 ;555 S
followed: oo O s it 09 40 BN e
K :Tpropeller+TnozzIe (1) “o n_uM;Zm,‘gk‘;ess'pusmO“
' rn D;ropeller . .
Figure 5: DoE of 30 samples for two and three design
_ Quropelier (2) parameters.
“rn *DS opetier As the response surface accuracy depends dbdkethe
number of initial design to generate is a compromise
3 =Yaua (3  between:
nD

s a high number of samples creating an accurate
approximatemodel, but refining in area of low
interest and requiring more computation power;

WhereT = axial thrust(N); Q = torque (Nm)” = water
density (kg/m®); n = revolution rate (rps)D = propeller
diameter (m); an/, = incoming flow velocity (m/s)



s alow number to limit as much as possible @D  Once theN, uncoupled simulations are solved, statistical
effort. moments of any output are automatically computed by

For a full benefit of this prexploration, theDoE is taking the weight from the Gauss quadrature. The

populated with5 times the number of design parametersnean and variance are calculated as followed:

in this study. 7 For noncertered moments, such as the mean

3.3 Surrogate model e 1;

From the DoE, the metamodel can be created. This m, A _N_P W)l 4
approximate model, also called surrogate model, provides ror cenered =

global design trends. The aim of the surrogate model is to  For centered moments, such as the variaace @ .
mimic the propeller performances at points in between the m, :a“ip Ww.j - m zn (5)
DoE samples with a significant lower cost th@RD. eered = non cenere

3.4 Deterministic surrogate assisted optimization

The optimizer uses a genetic algorith®¥) to locate the
interesting areaGA has the advantage to seaglbbally 4.1.2 Sparse grid quadrature for
in the design space (Coley 1998nhd mimics the natural uncertainties

evolution process by extracting the best design candidal@sorder to handle multiple uncertainties simultaneously,
over a population based on the surrogate results. Once theNIPColMis usually applied with a full tensor product.
GA coupled with the surrogate model finds the expectethis eventually leads to an exponential numbeCBD
optimum. A CFD simulation is performed in order to simulations which is referred in the litteraturg Bt h e
check the valilly of this expected optimum design andc ur s e of d jamktimesfore caanbtibe ysed at
fine-tuned the response surface for higher accuratedustrial scale.

prediction capacity with the aim of advancing furtheo solve this issudligro et al (20B) applied the sparse

These statistical moments express the measure of the
uncertainties influence over the quantities of interest.

solving multiple

towards the global optimum. The objectives anggr i d techni que, based on Smol

constraints formulations can:be (Smolyak 1963).

1 Single objectve, in case of everal operating The sparse grid technique consists in trumcati
conditions, the objectives and constraints can bfimensional function terms higher than a level of
aggregated accuracy. Thus, Smolyakods qua

1 Multi-objectives, where the outcome of thecyrse of dimensionality, and therefore offers a more
optimization is the Paretq front. The Pareto fronéfﬁcient way of approximating function in high
represents a set of nalominaed designs, meaning yimension, allowing so to make simultanetrestment of
there is ndvetterdesign for tie respective objectives many uncertainties in compl@D CFD simulation.

combination. . o o
The nondeterministic optimization, discussed in the nexgﬁr?;s?én':ygrstfsnZ?;Oﬁ);gsZiitdgﬂiirg't: lesverfol'ms i each

section, shares a common workflow with the deterministjc Di X T d Smolvak arid
one. The main difference lies on the definition of the (n'?rﬁgs:oor} ensg;igro uct "ﬂ‘;\i’;:f”
objectives and constraints. uncertainties) | (number ofCFD) (number ofCFD)
4 NON DETERMINISTIC OPTIMIZATION FRAMEWORK

Any industrial design is influenced by a superposition af 1 3 3
several uncertainties. In order to understand the impact|of 5 9 5

these uncertainties, an uncertainty quantificatiQfQ)

method needs to be applied. 10 59049 21

4.1 Uncertainty quantification  method

4.1.1 Brief technical overview of the methodology 20 3% 41

To allow the propagation of uncertainties, the metho
used within this work, is the nentrusive probabilistic
collocation methodNIPColM) (Loeven 2007).

This approach was implemented and suda#igsapplied
on the NASA rotor 37validation case byNigro et al
(2017).

The basis of this method is formed by the expansion
the solution into Lagrange interpolating polynomials.
The base points are the collocation points, whic
correspond to the Gaugsadrature points weighted by an
input uncertainty defined as probability density functio
(PDF).

In order to compute the Gauss quadrature, the Golu
Welsch algorithm is used to provide the collocation pointf
and it weights (Golub & Welsch 1969).

A system of uncoupleddeterministicsimulations can be
eventually derived.

qL’.l.3 Sensitivity analysis for understanding the relative
uncertainty influence
When facing multiple uncertainties, the analysis of the
relative influence of each input uncertainty is an
importantelement. This analysis is based on the scaled
sensitivity derivatives, introduced by Turgeon et al
001), and is used to identify the most important
H}ncertainty over an output quantity
practice, the sensitivity derivative is defined as the
artial deivative of the solution, from the system of
uncoupled equations, with respect to the input uncertain
arameter. The result is then scaled by multiplying the
E’[andard deviation of the same random input.
he scaled sensitivity derivatives provide so th&arice
of each parameter separately, so no combined effects are
taken into account.



Moreover, by providing a measure of the influence ofA O4H topology is used to generate a serie of five nested
uncertainties over the output, this analysis allows tmeshes. The targeté&tt is 100, since the study is carried
reduce the number of uncertain input, by removing inputut on full scale. It gives a first layer size normathe

with little influence. This can have the positive effect ofurface equal t@e-05 meters. The O4H grid topology
using less deterministic simulations. consists in a elock in the skin block of the blade and H
4.2 Robust design optimization blocks around the main skin block. The quality of the
The main difference between the deterministic and- nofested meshes is summarized below {able 4. The
deterministic optimization is the definition of theMeshes are obtained by adjustthg number of points in
objectives and the constrgsnThe prior considers single the O4H topology without modifying the first layer
values, and the latter takes into account statisticflickness. It shows that the meshing strategy has
moments, represented by the mean and the vari@ce Mmaintained the high quality mesh and the+

and (5). The most direct approach is to apply th€ requirements.

method for every single design in tioE, hence the Table 4. Overview of the quality of the five nested meshes.

surrogate radel is constructed based on the statisticthesh 1 2 3 4 5
momens of each sample. However the cost of the-nor
deterministic DoE corresponds to the cost of thel millions points 39| 50| 62| 78 | 9.76

deterministic one times the number O simulations.
For a usual hundred of samples in ek, this approach | Min. skewness[?] | 10.4 | 10.4 | 10.4 | 104 | 10.4
is beyond any industrial application.
For this reason, Nigro et al (2018) propo$ke solution | Max.exp.ratio{] [ 28 | 29 | 26 | 23 | 20
to build the DoE including both design parameters an
uncertainties.
Here is the example of 18 design variables and
uncertainties assuming the distributies symmetric, it
gives 9deterministicsimulations to run. Using 3 points in
each direction of thBoE, we can obtain the following:
s DoEwith UQ simulatiors:

183z9 4 8@FDsimulations
s Mixed DoE:

18 423 6 &€FDsimulations
This gain in the computationaime is achieved at the
expense of not having the statistical moments direct
available in the surrogate model. In this manner, th
surrogate is updated witkhQ simulations during the

optimization procedure. Figure 7: Overview of the final mesh, on the left, a blade to
5 PRE-OPTIMIZATION STUDY blade view at0.2R and on the right, the mesh repetition

5.1 Numerical modelli ng

At the end, it is found that a mesh of 5 million points
g{ovides an excellent traddf between accuracy and
computation time (cffig. 8).

0.5800
5.1.1 Grid generation and grid dependency study 0.5795F =77 T it 5% of deviabion-
Aut oGri d5E, used for the nZjsq mat ed
multi-block structured mesgenerator, whiclgives a high < 5785
quality mesh on the sude, for a short generation time. 0.5780
In our case a 5 million points mesh is generated in 2
minutes on 4 threads. 07260 s S
Moreover, terplates can be used to project same topology ~ — 725 / lienit 0.5% of deviation
grid into newly design geometry shape, which is a main o724
advantage in the frame of an optimization. S 0723 /
0.722 ‘ ‘ ‘ ‘
4 5 6 7 8 9 10

Mesh [millions points]
Figure 8: Grid convergence curve for the design operating
condition.
5.1.2 Physics and boundary conditions
F 1 NE E/oTuseadlas flow solver, has been validated
for open water computations, and shows excellent
agreement with regards to experiments, and also to
capture cavitation pattern (Salvatore 2009).
FI NEE/ Tur bo -dimensiormal densitpased
Figure 6: Template in AutoG @t(u&tgr%d rﬂué IO&@ N%V'SFS_tQk(?% ?)olvc-fr HINg JIQg ¢ ¢
same mesh topology for different geometry shapét can be volume. Centrabpace discretization 'is employed along

seen the structured block topology is maintained for 2 With multi-grid, local timestepping and implicit residual
different geometries. smoothing, in order to speegh the convergence.

\ 4




For the current propeller, the grid density alloavgiét a 4 The inlet position should be selected in order to ensure an
levels grid and a \ycle for the multigrid method. interaction between the velocity profile and the blade,
In case of low mach number incompressible fluid, timewithout creating an upstream extrapolated lowe&spure
marching densitypased solver lacks of efficiency, a lowlevel. ,

speed preconditioning is often required to improve the = e
convergence rate. The precttioning method presented \\ // *”"’:@I
by Merkle et al (1985) is applied. \ A i
Standard boundary conditions for a typical open water - \ (& '
computation are applied and defined below:

s A static velocity profile and a static turbulence
conditions are specified at the inlet;

s An atnospheric pressure is applied at the outlet;

s A slip wall is set on the side wall of the cylindrical
domain, which allows to monitor the internal mass
flow for convergence behaviour;

s Periodic conditions are used to simulate only one
blade passage;

s And the claracteristics of the fluid are described in
thetable 5below.

Table 5: Main characteristics of the fluid.

Fluid model Incompressible

" [kg/m? 998 .

g[m?s] 1.0453€06 Figure 10: Me_ridional_ vievx_/ of the _simulatlc_)n u§ing the
11.5km/h velocity profile, with the axial velocity at the top,

The choice of the input velocitjistributionis dictated by and the extrapolated pressure at the bottom.

the simulation of theship at 10km/h and 11.5km/h. It The distance is manually adapted and set to 1 diameter
eventually gives the velocity profile at the propelletength, and 5 dimeter length for the outlet.

location (cf.fig.2). This configuration is used for both operating conditions
In order to take into account the highly roniform wake (10km/h and 11.5km/h).

while assuming a steady state periodic computation, tH® simulate the three dimensional environment, Sgalart
wake is averaged in the circuenéntial direction over Allmaras model of turbulence is selected. At the emd,

different radius locations. single computation for 1 operatingcondition, lasts 26
__ Axialflow min on 48 cores.
08 A ™ 5.1.3 Cavitation inception
0.7 ; Cavitation can have a significant influence over the open

water characteristics of the propeller, and thus should be
considered when designing and optimizing any marine
propeller. The complety of the physics is real, and
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. i { designers often use costly cavitation model, to evaluate its
j | presence and the impact c_Jf thls two phase phenomgno_n.
e - A B In the frame of the optimization, the usage of cavitation
velocity [m/s] model is source of higheiCPU cost and can be
Radial flow Tangential flow contraictory with the expected short design process.
08 08 : Hence a meaningful way to predict the cavitation is to
07 2 07 compare the pressure level on the blade with the vapour

=g
o

pressure.

In our study, al5°C fresh water is assumed with a vapor
pressure equal tb700 Pa

In order to monitor the cavitation, the cavitating volume,
or cavity, must be extracted. As the propeller tip position

average -0.1430 m/!
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o T2 o1 o T B T Y T is qgi_te close to free surface_position at the design
velocity [m/s] velocity [m/s] condition, the column of water is neglected. Hence the
Figure 9: Circumferential averaging of the wake flow field. cavity is computing by mean @ isesurface of static

It can be seen offig.9, the radial component can bepressure belowhe vapour pressure
neglected, and the tangential one remains small. HeriThis method has proved to give a first idea thé

only an axial profile is used #ie inlet. cavitation pattern (Salvatore et al 2009), but must be
The position of the boundary is also important, andalidated by a more accurate model afterwards.
requires considerations. But in the case of the optimization, & ian excellent

guantity to monitor.



Those extrema are globally prescribed by four accuracy
classes, rangg from the most restrictive to the widest
tolerances. In this test case, thel&ss tolerance is used,
which represents the most accurate and restrictive one.
The tolerances definition is of importance, because the
final parametric modeller of the prdr has to be
defined taking into account the means of tolerance
measurements.

5.2.2 Operational uncertainty

Inland vessels operate seldom at the same working
regime. The ship may be navigating at different speeds,
Figure 11: Static pressure isoline and cavitating cavity, ~€specially speeds higher than the despgmt, or with
represented by an isesurface in blue, for the design different loadings inducing different draughts (ag.1).
condition (10 km/h). Those variations might change the ship wake, influencing
The cavity of abou#t00 miremains small compared with the operating regime of the propeller.

the overall size of the propet. BesidesCarlton (2012)
indicates that a moderate level of cavitation may no
affect the propeller hydrodynamics performances, so th
constraint on the cavitation volume should not be to
strict during the optimization.

5.2 Selection of the uncertain  parameters

5.2.1 Geometrical uncertainties
Manufacturing tolerances, for marine propellers, are rule
by I1ISO norms such as thé&SO-484-2 (2015) for any
marine propeller betweeéh80and2.50m.

The tolerances are usually expressed as a lower and
upper deiation from a nominal value. Those extrema ar= . . .

taken to represent a statistical tolerance by means offigure 13: Streamlines, colored by the velocity magnitude, at

probability density functioicf. fig.12). the wake of theship for different draughts.
) 10 In this manner, two resistance computations are

~ vmymar | performed with two different draughts, nominal and
VN maximal draughts (cftab. 1). The nominal wake is then
computed.
Fig.14 shows the difference in the velocity field at the
propeller location. In order to enlighten the variation of
the axial velocity, a radial averaging is performed, and
shows a maximal variation of 3%. Hence, a symmetric
N S PDF is defined using as extrema the maximal variation.
A T R " The wake axial profile (cf. fig.9) aregoing to be shifted

Figure 12: PDF and CDF for symmetric and non-symmetric by this variation during th&Q computations.
distributions.

In this paper a betdistribution isused and determined SR
from the ISO extrema which is a percentage of the
deviation compared to the nominal design value.
Table 6: Definition of each tolerance in case of a-8ass
manufacturing accuracy.

o
o

o
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Probability density function
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o
o
Cumulative distribution function
~

Maximal draught = 3.35m

Plus tolerance Minus tolerance
Radius 0.2% (not lesshan 0.2% (not less than
1.5mm) 1.5mm)
> o > 2 o A® A
Rake 0.5% 0.5% T — z
Relative Velocity X Relative Velocity X
Blade 2% (not less than | 1% (not less than 1mm|  Figure 14: Relative axial velocity at the propeller location
thickness 2mm) for the design speed condition under two different draughts.
5.3 Parametric definition of the propeller
Blade 1.5% (not less tharl ~ 1.5% (not lessthan [ |n order to castruct the parametric model, the target is
chord 7mm) 7mmy) first sliced at different radius locations (ify. 15). From

those sections, a parametric topology is used to define the
section profile and camber.



The stacking of each section, in other words, their relativehe result of this process is demonstratgdigure 16. It
positiors, defines the rake in the meridional direction andan be seen thaboth geometriesdo not display
the skewness in the tangential one. Both meridional asdynificant differences The parametric model respects
tangential laws are parametrized using a Bezier of @gobally the shape of the initial target oneasdoseup is
control points. performed on different sections of the blade.

The profile is defined using a-8line curve of 6 control It eventually shows discrete geometrical deviations and
points andthe camber using a Bezier of 3 control pointsamount locally up to 500 microns (dfg.17), where he
This Bezier curve also defines the local profile pitch andncertainty is equal to 2 mm for the thickness and 7 mm
chord. for the chord.

St In conclusion, the local modifications are time overall
lower than the manufacturing tolerances.

1.7

s e

> 80% span BeB

60% span

d= 0,0003754.39932798

“>40% span

Radial direction [m]

>20% span

2 / g - -~
I d = 0.000336704987044
Trailing edge il

Leading edge J

l R*theta
0
Axial direction [m]

Figure 15: Location of the slicing sections along the span. span.
The choice of theextionslocations is determined by the )

: 5.3.2 Influence of the parametric model on the
ISO. Indeed, théSO requests manufacturers to verify the o
deviation at different locations on the blade, i.e. ZO‘Vd&eterm'n'St'c results
40%, 60% and 80% of the radius. Thus, it is better 10
control the uncertainty parameter and apply a correct
evaluation of its impact when both manufacturing
measuement and parametric modification are performed |
at the same radius. ‘
As suggested by Nigro et al (2018), the parametrizatior,
induces modifications and deviations from the initial
target geometry. In case of uncertainty study, it is crucial
to represent thenitial target geometry with a high
accuracy, such that the previously discussed deviation:
are significantly lower than the geometrical uncertainty.

m

Figure 17: Clos-up at the leading edge part at 60% of the

Static Pressure %Pa)
100000

Static Pressure (Pa)
Parametric geometry 100000

Target geometry

This verification is performed on two levels: Figure 18: Comparison of the pressure field between the
s First the parametric and the target geometry aterget (left) and the parametric geometry (right).
visually mompared; The influence of the error introduced by the parametric
s Then theCFD simulations are juxtaposed. model on theCFD results must be asssed.
5.3.1 Accuracy of the geometry parameterization This also allows validating the parametric model as
starting design for the optimization
Targst geometry Perametric:geometry Eventually, the flow field does not show any serious

difference(cf. fig. 18, and the overall results are within
1%. It validates the parametric model and also implicitly
confirms that even a small variation in the geometry
discretely affects the performances. It is important to
underline that the evaluation of the parametric model
accuracy has an importance in tRBO framework. For
deterministic optimization, this proce can be more
flexible, since the geometry is deformed in any case.
Table 7: Comparison of the target and parametric geometry.

0O Oa QIVIRWBAQ 0

Figure 16: Comparison between the target (left) and the Target | Parametric voi ans P
parametric geometry (right). . R
During the parametrizationa global visual inspection is Yu 1.411e+05( 1.402e+05 -0.71%
performed, in order to detect strong deviat®rand 564 | 2.959e+04| 2.9850+04 +0.87%

thereforeadapt the parametric topology fib accurately
the initial target geometry. cavity 400 mi 398 ml 20.5%




6 DETERMINISTIC AND NON-DETERMINISTIC The table 8 summarizes the performances of the
OPTIMIZATION deterministic optimum compared to the baseline, the
6.1 Deterministic optimization initial parametric geometyyand figure 24 shows the
geometrical differences.

Static Pressure (Pa) Optimum Static Pressure (Pa)
0 0

6.1.1 Overall formulation
The design parameters consist in a total of 18 variables: Bas¢ine
4 for the sections profile law;
2 for the chord law;
3 for the local pitch law;
3 for the camber law;
6 parameters for the skewness and the rake laws.
The thickness is kept constant, as thedification would
induce a change on the structural computation of t
bending moment. As suggested in secBay the DoE is
sampled by 90 designs. For each design inibE, the - \ ~.
overall quantities (1) and (2) are automatically pos lan e 1 = > g
processed, along witthe cavitation volume and the openrigure 20: Static pressure comparison between the baseline
water efficiency(6): (left) and the deterministic optimum (right).

KJ (6) When looking at the downstream velocity field, it can be

K, 2p seen that the tangential component ofdpgmum is less

Two operating conditions are considered and linked to trpéonour_]ced than the baseline (i 21). T'h|s |nd|c'af[es a
ship spees (cf. table 1, 10 km/h and 11.5 km/h. The more aligned flow and consequently a higher efficiency.

revolution rate of thepropeller is kept constant. Thus, desigh Soniton ey

only the inlet flow condition is changed (&ify.9). /

The overall objectives and constraints are the following:

s Improving the overall open water efficieneyby
using an aggregated formulation of batherating
conditionsog QQi NHN QO3 ¢ "TWQI DRPEQ'Q

s Maintaining the axial thrust as it is a requirement for
the contractual ship design speed. 3, is
constrained and equi 0.58

s Not deteriorating the performance, by keeping :
similar cavitation behaviour. As this constraint desigh Eondiion
should be flexible (cfsection 5.1.3 it is decided to
keep the volume belo®00 m|

s  Simulation should be converged. The criteria, to
decide whetherhie simulation is converged or not, is
based on the difference between the inlet and outlet
mass flow. This deviation should not exceed 0.1%,
otherwise the sample is rejected.

6.1.2 Optimization outcome . i
The deterministic morobjective optimization reaches Figure 21: Tangential véocity behind the trailing edge for

qptlmum .meetmg all ConStralntS within 30 |terat|on§. Th e baseline (upper picture) and the deterministic optimum
final optimum shows an increase in the weighte@qer picture).

efficiency of about 2.26% relatively (i.e. almost 1% in-,._ . A . .
absolute), while the thrust is maintained and the cavitati%h(;zlfde:gg éﬂﬁgega?é"tgg ?Su Leigzhzerwhere the midspan
is below the fixed threshold. bt N 'bl ",

Design convergence history Baseline >gi8 Optimum

O« O« O« O« O«

—s— CFD
—— Model
% Best

Gain in the objective value [%]
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. _ lterations o Figure 22: Midspan blade to blade view of the turbulent
Figure 19: Convergence history of the monobjective viscosity ratio between the baseline (left) and ta

deterministic optimization, model represents the surrogate deterministic optimum (right), at the design condition
model results. ' '



For the cavitation modelling, it can be seen that th€able 8 Comparison of the baseline and the optimum
improvement in the propeller performances is highlgerformances.

constrained by the cawition volume (cf.table 8), as the
final optimum features a cavitglosed to the constraint

value800 ml. In other words, the optimizer cannot find 3

better optimum without exceeding this constraint.

Baseline Optimum

\

Figure 23: Cavitation simulation for the baseline (left) and
the optimum (right).
Two steadycavitation simulations are eventually run to

validate the actl performances of the propeller (cf.

Baseline Optimum
Design  condition| Kt 0.58 0.58
10km/h
Kq 0.072 0.0705
- 0.39 0.401
Off-design Kt 0.506 0.505
condition
11 km/h Kq 0.068 0.0667
- 0.419 0.428
Weighted— 0.399 0.408
Cavity [ml] 398 769

6.2 Non-deterministic optimization

fig.23), and demonstrate that both designs suffer mingr2.1 UQ simulations
losses in their respective performances, validating then initial UQ study is performed with 13 uncertainties:

optimization procedure.

However, both designs feature bulsdlige cavitation at
the tip This is problematic in terms of vibration and
comfort. As it is suggested ifigure 11 the cavity is

attached to the nozzle shape, which indicates that thg
interaction between the propeller blade and the duct

influences strongly the cavity siz€hus the nozzle shape

should be also optimized, which is not the case in thiss

paper.

Figure 24: Overlapping of the optimum (in red) and the
baseline (in black) for the3D and the blade to blade (ab.2R
views.

s 4 uncertainties for 4 different sections chord defined
with a symmetric betRDF;

4 uncertainties for 4 different profiles thickness
defined with a norsymmetric betd&®DF;

1 uncetainty for the rake, which represents the
linear position of the tip compared to the root of the
blade, defined with a symmetric bé®F;

1 uncertainty for the gap between the blade and the
duct, defined with a symmetric be®dF;

1 uncertainty for the aal velocity defined in
section5.2.2.

By using a sparse grid level 1, 32 deterministic
computations need to be run. Indeed, Nigro et al (2017)
proved that a level 1 already provides accurate results on
the mean and the variance, which is sufficient fa th
RDO.

¢}

¢}

Figure 25: Scaled sensitivity derivatives of the open water
efficiency for both operating points, with 13 uncertainties.
Scaled sensitivity derivatives (sectichl.3) are then
computed, and show that the main influencing
components are the axialocity and the gap between the
duct and the tip. This analysis is quite logical, because the
efficiency — is function of the advance ratio of the
propellerJ, also function of the blade diameter and the
axial velocity 6).

Moreover, the uncertainties rfdhe thickness having the
lowest standard deviation are clearly more important than



