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ABSTRACT 
This article presents a design and optimization 
approach for a horizontal axis tidal stream turbine, 
through a surrogate-based optimization technique and 
numerical simulation using SNUFOAM, which is a 
computational fluid dynamics (CFD) code based on 
OpenFOAM toolkit. By using the method, design of a 
scaled model of a 100 kW class horizontal axis tidal 
stream turbine was optimized to maximize energy 
extracting performance. Several designs were produced 
through the three-level full factorial sampling 
technique, evaluated using the CFD code to find the 
objective function, the power coefficient. The Kriging 
surrogate was constructed for optimization, of which 
design variables were blade thickness parameters. For 
numerical simulation, grid dependency tests were 
conducted and the optimal number of cells was found 
to be around 0.5 million. A moving reference frame 
method was used to enable turbine rotation. Through 
this approach, the power coefficient of the turbine was 
increased by 18%. 
Keywords 
Computational fluid dynamics, design optimization, 
tidal stream turbine, SNUFOAM 
 
1 INTRODUCTION 
The renewable energy harvesting efforts from ocean 
environments have grown. Tidal stream turbines utilize 
tide, which is easy to predict its direction and 
magnitude and the energy density is higher than that of 
the wind. Among those, a horizontal axis tidal stream 
turbine (HATST), which has high energy extracting 
capability, is widely used (Douglas et al., 2008).  
Albeit the HATST has its origin in wind turbines, it is 
significantly different from them in certain 

characteristics such as fluid medium, loading, 
corrosion, and cavitation, etc. Batten et al. (2006) 
investigated the influence of various hydrodynamic 
parameters on the performance of marine current 
turbines. They also discussed the effect of pitch angle 
and camber on the cavitation characteristics of the 
turbine. O’Doherty et al. (2009) presented the 
validation of numerical analysis with experimental 
results and concluded that the Reynolds stress model 
predicted more accurate power coefficient (CP) results 
than other turbulence models. Harrison et al. (2010) 
compared numerical simulations and experimental 
results of far wake of horizontal axis tidal turbines. The 
thrust coefficient (CT) and ambient turbulence levels 
were found to be the main factors that influence the 
wake. Lawson et al. (2011) evaluated the effects of 
unstructured grid and computational time step size on 
HATST analysis. They showed that the grid generation 
was the major factor in the accuracy of the numerical 
analysis in designed operation conditions, whereas the 
time step size had no significant effect on transient 
analysis. Song et al. (2012) performed numerical and 
experimental investigations on various configurations 
of 100 kW HATSTs and concluded that the modified 
blade with tip rake provides maximum efficiency and 
improved cavitation characteristics. Lee et al. (2012) 
discussed the computational analysis of various 
configurations of HATST using the blade element 
momentum theory and CFD analysis. A significant 
agreement between those results was reported. Park et 
al. (2016) recently reported their study on HATST 
performance in off-design conditions. 
As HATST works in various conditions, a design 
optimization method is required to maximize the 
turbine efficiency in various operating conditions. 
Surrogate models are suitable for optimization of these 

 



problems, by minimizing number of computations. In a 
large design space, they guess the response in the 
unsampled regions (Goel et al., 2007). There are 
various surrogates such as Kriging, polynomial 
regression models, artificial neural networks etc.  
Each of them has their own merits and demerits. In this 
work, the Kriging model was chosen because it suits 
well for low dimensionality problems (Díaz-Manríquez 
et al., 2011). The Kriging model or Kriging surrogate 
model was developed by Danie Krige, in geostatistics, 
and later improved by Matheron (1963). Sacks et al. 
(1989) employed the Kriging model to estimate the 
deterministic computer codes. Kriging model imitates a 
relationship between the objective function and the 
design variable. It employs the Gaussian random 
process to approximate the given function (Jeong et al., 
2012). The Kriging model was applied to the aerospike 
nozzle (Simpson et al., 2001),  low pressure turbine 
exhaust hood (Wang et al., 2010), aeroengine turbine 
disc (Huang et al., 2011), and cooling turbine blade 
(Ao et al., 2012) for design optimization. Samad et al. 
(2008) performed optimization of the axial compressor 
blade by weighted average surrogates with Kriging and 
other surrogate models. A similar approach was 
successfully applied to a wave energy device recently 
(Halder et al., 2017). 
The expertise obtained from the optimization of wind 
turbines can be extended to the optimization of tidal 
stream turbines. The parameters such as rotor diameter, 
chord, twist, and thickness can be used as design 
variables, whereas the lift and drag coefficient can be 
taken as the objective functions for the aerodynamic 
optimization (Fuglsang et al., 1999). Tahani et al. 
(2015) performed multi-objective optimization on 
contra-rotating horizontal axis tidal turbines. 
Maximizations of torque and CP were taken as the 
objective with the design variables chord and twist 
distributions along the blade span. Torque and CP were 
improved by 4.3% and 57.9%, respectively. Huang et 
al. (2015) also optimized a contra-rotating tidal turbine 
with blade pitch angle as the design variable, and 
maximization of CP and torque coefficient as objective. 
Carrasco et al. (2016) optimized wind turbine blade to 
improve power production by using Kriging models. 
Genetic algorithm (GA) and sequential quadratic 
programming (SQP) methods were used for global and 
local search respectively.   
In this work, an optimization of a HATST combined 
with CFD analyses is reported and the fluid dynamic 
characteristics of the optimized turbine are discussed. 
A single-objective optimization to maximize CP by 
modifying the maximum thickness (MT) and the 
maximum thickness location (MTL) has been done. 
The Kriging surrogate-based optimization method was 
used with CFD simulations and description showing 
the fluid dynamics behind the performance 
improvement was reported in this paper.  
 
 

 
 
2 TEST MODEL AND DESIGN VARIATIONS 
2.1. Description of the reference model and the test 
condition 
A 1/20th scale model of a 100 kW-class HATST (see 
Figure 1), which was used in the experiments of Seo et 
al (2016) was selected as the reference design. The 
radius (R) of the turbine was 200 mm. It is a three-
bladed HATST with the blade section of NACA 63-
418. The chord length of the blade at 0.3R was 34.2 
mm. The turbine rotates in clockwise direction when 
viewed from the upstream side. For simplicity, the 
tower and nacelle of the HATST was not included in 
the computational study. 
 

 
In this study, three tip-speed-ratio (TSR) conditions 
were selected following the experimental study (Seo et 
al., 2016). Table 1 shows the test conditions. The 
turbine revolution rate was fixed at 240 rpm while the 
flow speed was varied to achieve the required TSR.   
 

Table 1. Test conditions 

TSR 
Turbine 
speed 
(rpm) 

Fluid 
velocity 

(m/s) 

Reynolds 
number (Re) 

at 0.4R 
3.3 

240 
1.523 60,000 

3.5 1.436 58,000 
4.0 1.257 53,000 

 
2.2. Optimization methodology 
There are ample parameters to modify a turbine blade 
so that a higher power extraction capability can be 
obtained. To optimize it, initially, the objective 
function (CP) and the design variables (MT and MTL) 
are defined, following a parametric study on airfoil 
design by Ma et al. (2015). After that, the optimization 
approach given in Figure 2 is followed.  The 

Figure 1. Geometry of the HATST (Seo et al., 2016) 
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optimization methodology is explained briefly in the 
section below. 
 
2.2.1. Selection of experimental design 

NACA 63-418 has MT of 18% chord length (C) and 
MTL at 33.9% C from the leading edge. For 
optimization, the sampling was done using 32 factorial 
design technique (see Figure 3), 32 factorial design 
consists of two design variables at every three levels. 
The coordinate (0, 0) denotes the reference blade and 
(+20, -20) represents the blade with a 20% increase in 
MT and MTL decreased by 20% from the reference 
profile, i.e. MT 21.6% C and MTL 27.1% C. 
 

 
 
Table 2 shows the limits of design variables which 
were selected after a few iterations in the optimization 
loop described in Figure 2.  
 

Table 2. Limits of design variables 

Variables Lower limit Upper limit 
MT -20% +40% 

MTL -40% +40% 
 
The hydrofoil profile modification was done by 
Qblade, open source software for design and analysis 
of wind turbines (Marten et al., 2013). The coordinates 

of the modified hydrofoil profiles were used to build 
three-dimensional (3D) geometries. The modified 
profiles with the reference one is shown in Figure 4. 
 

 
 

 
 
2.2.2 Kriging surrogate model 

The Kriging model is a statistical interpolator 
technique to fit the design points to predict the 
objective function values in a design space. It can be 
given as 

y(x)=g(x)+Z(x)                        (1) 
where, y(x) is the Kriging surrogate, g(x) is the 
polynomial function of the known design points and 
Z(x) is the stochastic function based on Gaussian 
distribution with zero mean and variance σ2. The 
covariance matrix is given by 

 Cov[Z(xa),Z(xb)]=σ
2
R[R(xa,xb)]; a, b=1..ns      (2)   

Figure 4. Reference and modified hydrofoil profiles 
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 Figure 2. Flowchart of optimization methodology 
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where ns is the number of sampling points, R is the 
symmetric correlation matrix of order (ns*ns) and 
diagonal values as unity, R (xa, xb) is the spatial 
correlation of the function between sample points xa 
and xb. The design points were evaluated by the CFD 
solver. The MATLAB toolbox DACE was used for the 
Kriging formulation (Lophaven et al., 2002). 
 
2.2.3. Optimal point search 

To obtain the optimal design point, SQP in fmincon 
function in MATLAB is used. It is an adoption of 
Newton method for constrained optimization (Boggs et 
al 1995) and approximates the objective and constraints 
as quadratic and linear functions respectively.  
The execution of SQP involves the following steps, 
updating Hessian matrix, solving quadratic 
programming and performing line search and merit 
function calculation (Raza and Kim, 2008).The optimal 
point is validated with CFD simulation and error 
analysis is done to check to see if the surrogate 
prediction is correct. 
 
3. COMPUTATIONAL METHODS 
3.1. Governing equations and numerical models 
The CFD code used in this study was SNUFOAM, a 
specialized code for naval hydrodynamics applications, 
based on OpenFOAM. A moving reference frame 
(MRF) was employed to realize the turbine rotation, 
without physically rotating the domain. 
 

          ∇.(uR����⃗ ⊗uI���⃗ ) +  Ω��⃗ ⊗uI���⃗  = -∇ �p
ρ
� + v∇.∇(uI���⃗ )         (3) 

           ∇.uR����⃗ =0                                                               (4) 
 
Equations 3 and 4 represent the governing equations of 
the CFD solver: the Navier-Stokes equations with 
Coriolis force and the continuity equation. The flux 
corresponding to the rotation of the reference frame 
was calculated by the relative velocity and applied to 
the entire flow field for steady state analysis. A second 
order scheme and PIMPLE algorithm were chosen for 
spatial discretization and pressure-velocity coupling, 
respectively, and k-Ω SST was used as the turbulence 
model (Park et al., 2013). PIMPLE algorithm is a 
combination of PISO (Pressure implicit split operator) 
and SIMPLEC (Semi implicit method for pressure 
linked equations) algorithms   
First, the computational domain for a single turbine 
blade was designed (see Figure 5). Dirichlet and 
Neumann boundary conditions were applied to the inlet 
and the outlet, respectively. In the periphery of the 
blade, interface boundary conditions using non-
matching interface was used. No-slip boundary 
condition was applied to the blade surface, and slip 
wall condition was employed to the inner wall and 
outer wall boundary. 

Considering the symmetry of the turbine, a fan-shaped 
block with a central angle of 120º was created, and the 
cyclic interface boundary condition was applied to the 
sides of the computational domain. Following Bahaj et 
al. (2007), the torque on the blade and drag force or 
negative thrust are expressed as CP and CT as shown in 
equations (5) and (6), respectively.  
 

            CP = Qω / 0.5ρVA
3 S                                         (5) 

            CT = T / 0.5ρVA
2 S                                             (6) 

 
where, Q is torque on the blade, ω is angular velocity, ρ 
is density of water, S is turbine disk area, VA is 
velocity of the tide, and T is negative thrust. 
 

 
 
3.2. Mesh generation 
The computational domain was meshed with structured 
hexahedral cells, as they provide more stable and 
accurate solutions than the unstructured grids in 
general. Hence, an advanced meshing tool, SNUFOAM 
ShipMesh Advanced based on cfMesh was used for 
hexahedral Cartesian grid generation. To include the 
sharp trailing edge of the turbine, each turbine surface 
was divided and the surface feature was improved 
through split – rename – merge process. Additionally, a 
prism layer zone was applied around the blade surface 
to increase the grid resolution at the boundary layer. 
 
4. RESULTS AND DISCUSSIONS 
4.1. Grid dependency tests and validation  
Table 3 shows the grid dependency test results for 
single blade domain. The grid resolution was varied in 
three different grids, which were used for TSR = 3.5 
conditions. The fine and medium grids produced torque 
coefficients that are less than 10% different from the 
experimental results. Also, the difference between fine 
and medium grid results is less than 1%. Hence, the 
medium grid was selected for all the remaining runs. 
Figure 6 shows the validation of CFD results with the 
experimental data (Seo et al., 2016). The experimental 
fluid dynamics (EFD) and the CFD results show the 

Figure 5. Computational domain with boundary 
conditions 
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same trend. CFD predicted CT and CP with error less 
than 2.15%. The CP and CT with variations of TSR 
were validated against the experimental results. 
 

Table 3. Grid dependency test results 

  
At TSR = 3.5, CP was the highest and showed the best 
energy conversion performance. At high TSR, CP 
decreased gradually as the angle of attack onto the 
turbine blade reduced.    

 
 
4.2. Optimization results 
The response surface using the Kriging model was 
plotted with the normalized values of MT and MLT 
(see Figure 7). The optimal design was obtained by MT 
increased by 27.2% and MTL moved 29.8% towards 
the leading edge relative to the reference profile, i.e., 
MT 22.9% C and MTL 23.8 % C.  

 

 
Table 4 presents CP for the optimal design predicted by 
Kriging and CFD. The surrogate model-produced result 
was accurate with only 2.13% error, compared to the 
CFD results. The optimal turbine produced 18% higher 
CP than the reference case. 
Figure 8 displays comparison of CP for the reference 
and the optimum design. The optimum blade provided 
improved CP at all TSR’s. The changes in CP with 
different TSR also reduced. 
 

Table 4. Comparison of CFD Kriging model results 

 

 
 
4.3. Flow details of optimized design   
The energy extracting mechanism is investigated 
through flow physics. In this study, pressure 
coefficient, turbulence kinetic energy, and tip vortex 
strength are examined. Figure 9 displays the pressure 
coefficient contours (Cpress) on the turbine blade. 
Especially low-pressure region on the suction side was 
noticeable in the optimal case. 
Figure 10 shows the turbulence kinetic energy 
distribution around the blade sections. The turbulence 
kinetic energy is concentrated at the suction side, 
where strong adverse pressure gradient exists. The 
turbulence kinetic energy increases along the radial 
direction, owing to 3D effects on the turbine blade. In 
the optimal design, the turbulence kinetic energy 
decreases dramatically. The reduced turbulence kinetic 
energy implies that the energy loss by the turbulence 
generation decreased in this optimal design case.  

 Total cell 
count 

  Wall y+ CP CT 

Coarse 179,467 17.1 0.234 0.525 
Medium 538,935 12.13 0.262 0.551 
Fine 1,239,747 10.07 0.260 0.548 

 MT 
(%) 

MTL 
(%) 

CP 

(CFD) 
CP 

(Kriging) 
Error 
(%) 

Reference 0 0 0.262 -  
2.13 Optimal 

design 
27.2 -29.8 0.3089 0.3155 

Figure 8. Comparisons of CP for reference and 
optimum design. 
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Figure 7. Response surface of Kriging model 
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Figure 6. Comparisons of CP and CT from experiments 
and CFD analyses. 

 



 

 
Figure 11 shows the vorticity magnitude around the tip 
vortex region. The tip vortex increases in the optimized 
turbine case, as the pressure difference between the two 
sides increases, as shown in Figure 9. The tip vortex 
dissipates in the near wake, as reported in previous 
CFD studies (Harrison et al., 2010).  
  
5. CONCLUSIONS 
Design optimization of horizontal axis tidal stream 
turbine with computational fluid dynamics and Kriging 
surrogate models is presented. The conclusions are as 
follows. 
• The Kriging model predicted the optimized design 

with commendable accuracy.  
• The hydrofoil profile with a 27.2% increase in 

maximum thickness and 29.8% decrease in the 

maximum thickness location from the reference 
profile is found to be optimal. It improved the power 
coefficient by 18%.  

• The enhanced power coefficient of the optimized 
blade can be attributed to the suppression of 
turbulence kinetic energy compared to that of the 
reference blade case. 

• The optimized blade shows a high vorticity at blade 
tip compared to the reference one due to the high 
pressure difference across its suction and pressure 
side at tip region of blade. 

As this study is limited to single objective optimization 
of power coefficient without considering any 
constraints, it is recommended to make the 
optimization method more realistic with multiple 
objective functions.  
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DISCUSSION  
 
Question from Jose Falcao De Campos  
      I would be interested in the reason for selecting the 

Tip speed ratio or TSR=3.5, with a relatively low 
power coefficient to focus the foil design 
optimization. 

 
Authors’ closure  
     The tip speed ratio or TSR=3.5 is the design tip 

speed ratio of the reference turbine. The power 
coefficient is maximum at the design TSR, and it 
drops drastically beyond the design TSR due to stall 
phenomenon.  

      The maximum power coefficient of the reference 
turbine at design TSR=3.5 is 26.2. Moreover, the 
value of the power coefficient of the reference 
turbine is less, hence the thickness parameters of 
the hydrofoil are optimized to improve the power 
coefficient of the turbine. The optimization 
significantly improved the power coefficient and 
off design performance of the turbine. 
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