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ABSTRACT

In this paper, the benefits and limitations of wind turbine
propulsion of ships are discussed. When designing the
wind turbine blades for a wind turbine-powered vessel, the
objective is not to maximize the power output, but to max-
imize the net forward force. The net forward force is the
forward force from the water propeller minus the back-
ward force on the wind turbine. This objective results in
a different blade design than that of modern commercial
horizontal-axis wind turbines. A blade element theory ap-
proach to the design of optimal blades for wind turbine
powered boats and vehicles is used to design a wind tur-
bine for auxiliary propulsion of a 150 m long tanker. The
optimized blade design is shown to result in a higher fuel
saving for the ship, when sailing a given route at 10 knots,
than what is attained with a commercial wind turbine of the
same rotor diameter onboard the ship. Finally, the same
ship is equipped with wingsails instead of a wind turbine
for auxiliary propulsion, in order to compare the fuel sav-
ings. It is seen that the fuel saving is slightly higher when
employing the optimally designed wind turbine than when
employing wingsails of equivalent sail area as the wind tur-
bine rotor disk area.
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1 INTRODUCTION

Increasing focus on reduction of COy emissions and the
possibility of future severe shortage of oil have spurred
renewed interest in wind as supplementary propulsion of
merchant ships. Several alternative solutions have been
considered, like kites, conventional soft sails, rigid sails,
Flettner rotors, and wind turbines. A tempting aspect of
wind turbine propulsion is that it can provide propulsive
force when sailing directly upwind, something that is im-
possible with the other mentioned forms of wind-assisted
propulsion.

In the last decades, vertically oriented airfoils, known as
wingsails, have at an increasing rate replaced soft sails as
they are aerodynamically more efficient when a high lift-
to-drag ratio is important. Indeed, the winner of the 33rd

America’s Cup (2010), BMW Oracle Racing’s trimaran,
USA-17, was fitted with a 68 m high rigid wingsail, replac-
ing the traditional soft main sail. Wingsails have also suc-
cessfully been fitted on several commercial ships for auxil-
iary propulsion. A recent summary of this is given by Bose
(2008). Shukla and Ghosh| (2009) estimated the fuel sav-
ing for a wingsail-equipped ship sailing Mumbai - Durban
- Mumbai at 7 knots to be 8.3%. As far as the authors are
aware of, no merchant ships have yet been equipped with a
wind turbine for propulsive power generation. One reason
for this is that wind turbine propulsion generally provides
higher propulsive force than wingsails per turbine/sail area
only when the ship speed is less than about half the wind
speed (Blackford, [1985). This implies that for wind tur-
bine propulsion to be the preferred form of wind-assisted
ship propulsion, a ship cruising at 15 knots must sail an
extraordinary windy route with wind speeds above 15 m/s.
The other alternative is, of course, to reduce the ship speed,
a measure which in itself will reduce fuel consumption.

The height, or air draft, is a limiting factor for both
wind turbine ships and ships equipped with soft or rigid
sails. The bridges that cross the seaward approaches to the
world’s major ports restrict the air draft of wind-assisted
ships to about 60 m, unless the wind turbine tower, wing-
sails or masts can be folded down. This means that for
a wind turbine-powered ship of length 150 m, the diame-
ter of a non-foldable horizontal-axis wind turbine on deck
is limited to about 40 m, considering the freeboard and a
safety clearance from the blade tips to the deck. When it
comes to stability issues, the increased heel angle due to
the wind turbine is shown in this paper to be negligible.

Fig. [I] shows the required propulsive power as a func-
tion of ship length for different scalings of a tanker hull
at 5, 7.5, 10, and 12.5 knots, as well as the power out-
put from Vestas’ wind turbines of varying diameters (The
Wind Power, 2010). Hull data for the full scale ship can
be found at http://www.gothenburg2010.o0rg/
kvlcc2_gc.html. The residual resistance for the dif-
ferent ship lengths and speeds is found using Hollen-
bach’s method (Hollenbach, (1998). The transverse pro-
jected area above the waterline, Arg, is assumed to be

2
Arg = 1100 m? - (LMY where Ly is the length
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of waterline. The corresponding air drag coefficient with
respect to Arg is assumed to be Cps = 0.8. The required
propulsive power is calculated as the total resistance times
the ship speed divided by a total efficiency factor of 0.7.

2 OPTIMAL WIND TURBINE DESIGN

2.1 Axial momentum theory

First, let us look at the simple axial momentum theory to
see how the task of designing an optimal wind turbine for
ship propulsion results in a different blade design than a
wind turbine designed to maximize the power output. Con-
sider a wind turbine-powered ship that is sailing at an angle
0’ to the apparent wind, see Fig.[2} The true wind direction
relative to the ship course is 6. The wind speed is W and
the ship speed is u, which together give the apparent wind
speed U. From axial momentum theory (Hansen, 2008),
the component of the force on the wind turbine parallel to
the ship’s course is given by

Fw = 2p,U%a(1 — a)Acos?, (1)

where p, is the mass density of air, A is the turbine ro-
tor disk area, and a is the axial induction factor. The power
generated by the wind turbine is from axial momentum the-
ory

P =2p,U%a(1 — a)?A. )
The forward force from the water propeller is then
P
F= *C, 3
U

where ( is the overall propulsive efficiency, which accounts
for losses in the power transmission between the wind tur-
bine and the water propeller, as well as water propeller
losses. The net forward force, F),.; = F' — Fy, then be-
comes

P
Fret = i 2paU%a(1 — a)Acos . 4)
u
Inserting Eq. (2) into Eq. (@), and differentiating with re-
spect to a gives

anet
da

= 2p,U?A-

%(1 —4a+3a?) — (1 —2a)cost|. (5)

Setting Eq. (3)) equal to zero to find a maximum value for
F.: leads to a quadratic equation which has the solution
—(2cos b — 4v)
6y
N V/(2cos @ —47)2 — 12y(y — cos @)
6y

()

where v = % We see from Eq. (@) that if not ¢ ap-
proaches zero when u approaches zero, % will approach in-
finity, and we cannot use Egs. @), @) or (6). If the ship is

sailing directly upwind at half the wind speed and { = 0.7,
Eq. () gives a = 0.22, or a = 0.80. Momentum theory is
not valid for a > 0.4 (Hansenl [2008)), so the valid solution
is a = 0.22. If we instead want to maximize the power
output from the wind turbine, we differentiate Eq. with
respect to a, and set the resulting equation equal to zero.
We then find that @ = % or a = 1. Calculating the power

3
coefficient defined as

= —— =4a(l —a)? (7

with ¢ = %, we get Cp = 16/27, which is known as the
Betz limit.

Inserting these two values of a gives the results shown in
Table We see that although the power from the wind
turbine that is optimized for ship propulsion is 10% less,
the backward force is 23% less, resulting in a net forward
force that is 23% higher than that of the wind turbine that
is optimized for power, for the given values of ¢,6’, and %

Table 1: Backward thrust, power and net forward force from
axial momentum theory.

a 0.22 |1/3

Fuw/(paU%A) | 0.3423 | 0.4444
P/(pU*A) 0.2673 | 0.2963
Fret/ (paU?A) | 02190 | 0.1778

2.2 Blade element theory
Blackford! (1985) showed how classical blade element the-
ory can be used to design optimal wind turbine blades for
a wind turbine-powered vessel. Blackford’s approach is
briefly presented here with the original notation, and ap-
plied to design the wind turbine blades for a notional wind
turbine ship.

Ship course

Figure 2: Sketch of wind and ship velocity vectors.

The apparent wind speed, with respect to the wind turbine-
powered vessel, see Fig.[2] is given by

U=W(Q1+ f2+2fcosb)/?, (8)

where f = u/W is the ship speed to wind speed ratio. The
angle 0’, which is the angle between the apparent wind and
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the ship course, is given by

. 9 1/2
1- (W(S}“‘)) ] Lo

where the plus sign is to be used for 0 < 6/ < 7/2, and
the minus sign for 7/2 < ¢’ < 7. When 6’ > 7/2, Fyy is
actually helping the ship forward. The apparent wind speed
experienced by the rotating blade element at radius r, see
Fig.[3] is given by

cost =+

V=(UQ1—-a)*+[(1+d)u*V? (10)

where a is the fractional decrease in wind speed when the
wind reaches the blade, a’ accounts for the induced rotation
of the wind field at the blade, and €2 is the wind turbine
rotation rate in rad/s.

The power extracted from the wind by the blade element of
width dr is given as the product of the tangential compo-
nent of the aerodynamic force acting on the blade element
times the tangential velocity component of the blade ele-
ment, 7, i.e.

1
dP = ~pa,cNV?(Cyp sin ¢ — Cp cos ¢)Qrdr,

5 an

where NV is the number of blades, ¢ is the apparent wind
angle, c is the chord, and C}, and Cp are the lift and drag

U(1-a)

e
\—

Figure 3: Wind turbine blade element with air velocity com-
ponents.

coefficients of the blade element respectively. The forward
force produced by the water propeller can be derived from

the wind turbine power as
dF = (dP/u, (12)

where ( is the overall efficiency factor of the driving mech-
anism, which consists of all components transmitting the



power between the wind turbine and the water propeller as
well as the water propeller itself.

The backward force on the wind turbine will have a com-
ponent transverse to the motion of the ship as well as par-
allel to it. Assuming that the transverse force is balanced
by a lifting force due to a small leeway angle between the
ship and its path, the transverse force component can be
ignored. The longitudinal component is given as

dFy = %pacNVQ(CL cos ¢ + Cp sin ¢)drcos@'. (13)

The net forward force, dF' — dFyy, is found when combin-

ing Eqs. (TI), (I2) and (13) as
1
dF —dFy = ipacCLNV?

Q
C—r (sin ¢ — e cos @) — (cos ¢ + esin @) cos @’ | dr,
u
(14)
where e = C'p /C', is the drag-to-lift ratio of the airfoil sec-

tion. From momentum theory, we know that the backward
force on the wind turbine can be written as

dFyw = 4p,U?a(1 — a)mrdr cos 6. (15)

The power, dP, can be written as
1
dP = QdQ = QpGCNVQCL(sinqS — ecos @)Qrdr, (16)

where the torque, d@, exerted on the blade elements by the
fluid annulus of width dr can from momentum theory be
written as

dQ = U(1 — a)4wd' Qr3 padr. 17

The alternative expression for dP, dP = d(@, then be-
comes

dP = U(1 — a)4wad' Q%*r3 pydr. (18)

Combining Eqs. (I2), (I8), and (I3), the total net forward
force can be written as

F e 71—|—f2+2f0050
Apa R2ZW?2 52

s
/ a(l —a)H(s)sds,
0
(19)
where R is the wind turbine rotor radius, S = QR/U is the
tip speed ratio, s = 2r /U is the dimensionless speed ratio
and the function H (s) is given by

H(s) = Cg (a’;Q) — cos?',

(20)
u

where U/u can be obtained from Eq. (8) and cos &’ from
Eq. ).

Now, let us keep ¢, f, and € fixed, set 6 = 0, and try
to maximize F,.; with respect to a(s) and S. It can be

shown (Blackford, [1985) that a’ is related to a through

@(s) = —5 (1 +¢/5)

1
+ 5\/(1 +e/s)2 +4al(1—a)/s? —¢€/s]. (21)
Blackford found that the function

a(s) =~ ag[l — exp(—2s)] (22)

gives a good approximation for the maximum Fj,.; values.

As discussed by |Glauert| (1943)), the maximum velocity re-
duction in the slipstream, 2Ua, only occurs on the vortex
sheets formed by the trailing vortices from the blade tips.
The circumferential average decrease of axial velocity in
the slipstream is only a fraction G of this velocity. The
wind speed reduction parameter a should therefore be mul-
tiplied with GG to account for a finite number of blades, N.
An approximate expression for G' was first worked out by
Prandtl, known as Prandtl’s tip loss factor:

G = % arccos [exp (—g)], (23)
where N
g=—(1-3s/9V1+ 52 (24)

2

The optimal apparent wind angle, ¢, can be found from

¢(s) = arctan E (11;5)]

where a and a’ are determined from Eq. and Eq.
respectively. ¢(r) can be found by substituting s = £

T
Eq. (25).
By combining Egs. (I3 and (I3)), we get an expression for
the chord length:

(25)

into

8rU2%a(1 — a)r

= . 26
¢ NV?2(Cp cos ¢ + Cp sin @) (26)
From Fig. 3] we have
) U?(1 —a)?
sin’ ¢ = % 27)
and by inserting this into Eq. (26), we get
. 8rrsin?(¢)a 28)

B N(Cpcos¢p+ Cpsing)(l —a)’

This is a different expression than what Blackford obtained
for c.

3 FUEL SAVING FOR A NOTIONAL WIND TURBINE
SHIP
As aresult of the considerations discussed above, in the fol-
lowing calculations, a 150 m long ship with the same hull
as studied in Fig. [T]is theoretically fitted with a four-bladed
39 m diameter horizontal-axis wind turbine for auxiliary



propulsion, and set to sail the route Peterhead - Bremer-
haven - Peterhead, see Fig. ] This route is chosen pri-
marily due to the weather stations in close proximity to the
route, for which statistical wind data is available. The route
is divided into 8 legs, where the wind data for each leg is
taken from the closest weather station. Table 2| gives the
dominant wind directions and average wind speeds for the
different legs in January, 10 m above sea level. In order to
calculate the wind speeds at an elevation of 39.5 m above
sea level, which is the hub height of the notional wind tur-
bine ship, Eq. is used:

_ _ 2\«

U(z) = Uro (E) ;
where U (z) is the mean wind speed at elevation z, Uy is
the mean wind speed at 10 m elevation, and o = 1/7 =
0.1429 is a typical value of o (Peterson and Hennessey,
1978)).

(29)

For given values of 6, W, f, and (, there is a value of ay,
see Eq.[22] that gives the maximum possible net forward
force for a given wind turbine radius R. In order for the
wind turbine to operate at different values of ag, a different
blade design is required for each combination of 6, W, f,
if ¢ is fixed. This is, of course, totally impractical, and a
practical alternative is to use a wind turbine with control-
lable blade pitch. However, it is not possible to obtain the
exact optimal pitch for all radii if the blade is turned a cer-
tain angle from, say, the optimal upwind blade pitch. As
Blackford points out, it would likely be best to design the
wind turbine for optimal performance upwind, since this is
the most important and most critical direction. The blades
should, nevertheless, be able to be turned in order to opti-
mize the net forward force at different wind directions and
wind speeds, and to have full control of the wind turbine
and its loads in strong winds.

From the discussion above, the optimized wind turbine ship
is designed to sail at 10 kn, with § =0 and W = 20 kn =
10.288 m/s, so f = 0.5. Itis assumed that all blade sections
operate at an angle of attack of & = 4°, and that C, = 0.8
and C'p = 0.024. The chord and pitch angle distributions,
see Table[3| are hence fixed, as they are designed for opti-
mal upwind performance, but the blades can be turned, and
) regulated by a gearing mechanism, to maximize Fj,¢; for
the specific combination of #, W, and f.

With the chord and pitch angle distributions known, the
wind reduction factor, a, is now calculated from Eq. @
Solving Eq. (28) for a yields

b
=— 30
“Titw G0)
where N(C o s
b:c ( Lcos¢.+2 Dbmqﬁ). 31)
87rsin” ¢

Knowing a, a’ is then calculated from Eq. (21). We can
now check if the values of a, @’ and (2 results in the correct

r [m] ¢ [deg] ¢ [m]
1 70.8 1.26
3 523 3.58
5 40.2 4.30
7 32.1 4.18
9 26.5 3.79
11 22.5 3.34
13 19.6 291
15 17.5 2.46
17 16.2 1.93
19 16.0 0.97
19.5 16.9 0

Table 3: Design parameters for the four-bladed optimized
wind turbine.

o, see Fig. [3| An iteration procedure must be performed
for different angles of attack, «, at each radial blade posi-
tion, to find the o which gives the correct ¢. The NACA
4412 foil section is used here, with C}, as a function of «
given in |Abbott and von Doenhoff| (1959). It is assumed
that Cp = eCr,, where e = 0.03.

By adjusting the rotation rate {2 and blade angle, for a
given blade design, we can get relatively close to the op-
timal F,,.; if the blades were designed specifically for the
actual values of 0, W, and f. F,¢ is found through nu-
merical integration of Eq. (I4). The net power in Table [
is defined as the power generated by the wind turbine mi-
nus the power required to overcome the backward force on
the wind turbine rotor disk, and can be calculated by mul-
tiplying the net force with the ship speed and divide by the
efficiency factor (2, which accounts for losses from the en-
gine to the propeller, and propeller losses. With a generator
efficiency, (1 = 0.95, the overall efficiency factor then be-
comes ( = (1(2, and is assumed to be ( = 0.7 here. The
total energy saved using the optimized blade design for 0
=0, W =10.288 m/s, and f = 0.5, when adjusting the
wind turbine rotation rate and blade angle, is 40630 kWh.
This equals 33.1% of the total required energy, including
a sea margin of 15%. A simplified model for the drag on
the wind turbine tower is included in the calculations: The
tower is divided into two vertical cylinders, one covered by
the wind turbine and one uncovered by the wind turbine.
The drag force on the tower, Fp ;, is then calculated as

1
FD,t :CD,t 5/)(1, (U Ccos 9/)2 At,uncovered
1
+ CD,t §pa (U(l - a) Ccos 0/)2 At,cm)ered; (32)

where C'p; is the drag coefficient of the cylindrical tower,
At uncovered and A¢ covered are the projected areas of the
wind turbine tower that are uncovered and covered by the
wind turbine, respectively. In the calculations, the follow-
ing estimated values are used: a = 0.1, At yncoverea = 30
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Figure 4: The route for the wind turbine ship.

m2, At,co’uered =48.75 m? and CD,t =1.17.

In order to study the effect of optimizing the wind turbine
design for a given wind turbine diameter, similar calcula-
tions are done for a Vestas V39/600 wind turbine onboard
the ship, see Fig.[5] The Vestas V39/600 has a rotor di-
ameter of 39 m, and can generate up to 600 kW of power.
Using the power coefficient, Eq. (EI), where P is the power
found from the power curve 2010) for a given
wind speed, the axial induction factor, a, is then calculated
by solving the cubic equation

4a® — 8a® 4+ 4a — Cp = 0. (33)

Note that Eq. (33) has no solution if Cp is above the Betz
limit. Solutions of Eq. (33) larger than 0.4 are not valid,
due to the limitations of momentum theory. Using ax-
ial momentum theory, the component of the force on the
wind turbine in the direction of the ship course is given by
Eq. (I).

Again, the net force is calculated as the power generated
by the wind turbine minus the power required to overcome
Fy at 10 knots. As we see from Table ] employing the
Vestas V39/600 wind turbine on the notional wind turbine
ship will result in a total energy saving of 24.4% for the
given ship and route, compared to 33.1% for the optimized
wind turbine design. The drag on the Vestas V39/600 wind
turbine tower is set equal to the drag on the optimized wind
turbine tower, and again, a sea margin of 15% is used.

Figure 5: Illustration of a Vestas V39/600 wind turbine on-
board a tanker for power generation.

4 COMPARISON WITH WINGSAILS
The fuel saving attained for the optimized notional wind
turbine ship is compared with that of a notional ship of the
same dimensions, using wingsails instead of a wind turbine
for auxiliary propulsion. The maximum possible sail area
for a particular ship, is

SA =K - D3 (34)

where D is the volume displacement of the ship, and K is
a constant, which has the value 3.2 for wingsails
1983). Using Eq. (34), the maximum possible sail area for



Average wind

Dominant

Leg Distance Closest weather station wind  direc- speed  [m/s]
ton 10 m above

sea level

Peterhead - a 63.01 km Peterhead Harbour SxSW 6.7

a-b 150.26 km Forties 3 Platform SxSW 9.3

b-c 144.97 km Ekofisk Platform SxSW 12.9

c-d 140.62 km Tyra Oest ExSE 12.9

d-e 118.39 km Nordseeboje 2 ExSE 9.8

e-f 91.36 km Feuerschiff Dt. Bucht N 9.8

f-g 48.15 km Leuchtturm Alte Weser ~ SW 10.3

g - Bremerhaven 29.65 km Bremerhaven SxSW 6.2

Table 2: Route with wind data for January (Windfinder, 2010).

our ship is 3130.5 m2. In order to compare the propul-

sive force for the wingsail-equipped ship with that of the
wind turbine-powered ship, a wingsail area equal to the ro-
tor disk area of the wind turbine is chosen. With 10 half-
elliptical wingsails of maximum chord length 6.08 m and
height 25 m, the total wingsail area is 1194.1 m?, which is
approximately equal to the rotor disk area of the wind tur-
bine, and also well below the limiting maximum possible
sail area. It is assumed a 1 m gap between the wingsails
and the ship deck, and that this gap is so small that the in-
duced drag is that corresponding to an elliptical wing of
half-span equal to the wingsail height. According to Ho-
erner| (1965), this assumption is justified for gaps below
0.06 of the sail height. It is further assumed that the in-
coming wind is undisturbed by the ship, and that the wind
speed at half the wingsail height is representative for the
whole wingsail. The wingsail masts are assumed to be 1 m
high and 2 m in diameter, which gives a small additional
contribution to the total drag.

The wingsail masts are spaced two maximum chord lengths
apart, and it is assumed that the local wind at one wing-
sail is not affected by the other wingsails. This assump-
tion is least incorrect when the apparent wind is abeam.
When the wind direction is directly aft, experimental re-
sults on groups of longitudinally spaced flat plates normal
to the flow (Ball and Cox, [1978)) are used to calculate the
drag force. It should be noted that the experimental results
were obtained at a Reynolds number of 3.9 - 103, while in
our case, the Reynolds number based on maximum chord
length is up to 6.9 - 105. However, as the drag coefficient
for a flat plate normal to the flow is almost constant for a
wide range of Reynolds numbers, we believe that it is jus-
tifiable to apply these experimental results also for higher
Reynolds numbers. The wingsails are assumed to be unaf-
fected by each other until the wind angle is so large that
the wingsails begin to shield each other, not accounting
for spreading or deflection of the wake, which we consider
to be a conservative assumption. From this wind angle, a

straight line is drawn down to the drag value for normal flat
plates, as shown in Fig. [0]

The wingsails are assumed to have symmetrical cross sec-
tions of NACA 0015 profiles. The lift, F7, and drag, Fp,
of the wingsails are calculated as

1
Fr = 5paCLSUQ, (35)

1
Fp = §paCDSU2; (36)

where S is the wingsail area, and the two-dimensional lift
and drag coefficients, ¢; and ¢4, are found from Sheldahl
and Klimas|(1981) for all angles of attack. Taking the finite
span effect into account for the half-elliptical wingsails, the
three-dimensional lift and drag coefficients become

(&)
Cp = 37
L 1 I Aipa ( )
2
Cp =cq+ L ) (38)
TAsp

The total net forward force for the 10 wingsails, Fy,et ot 1S
then found as

Fret.tot = 10(Fp sin’ — Fp cos@'), (39)

where the maximum values of Fj,¢; 0¢, found by varying
the angle of attack, is plotted in Fig. [6| The resulting
fuel saving for the wingsail-equipped ship sailing the same
route at 10 knots, with a 15% sea margin, is 31.8%.

In order to compare the heeling moments of the wind tur-
bine and wingsail rigs, let us look at the following scenario:
The ship is sailing at 10 knots, with true wind direction
104.9° relative to the ship, in 20 m/s true wind speed, so
that the apparent wind direction is 90°. The heeling mo-
ment due to the optimized wind turbine rig about the center
of gravity of the ship is now 6.08 MNm, whereas it is only
1.24 MNm for a Vestas V39/600 onboard the ship. The the-
ory is here applied to get the maximum F;,.; for the opti-
mized wind turbine, which gives both a much larger P and
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Figure 6: Net forward force from wingsails for a wind speed of 6.7 m/s, 10 m above sea level.

Net  power Energy saved

with opti- Net power with opti- Energy

mized wind with N?t powet . . mized wind saved with Energy .

. . with Time in . . saved with

Leg turbine design  Vestas . 1 leg [h] turbine design  Vestas winesails

for f=0.5,0 V39/600 Ef;lf]sal 5 e for f=0.5,0 V39/600 [kvfh]

=0, W =20 [kW] =0, W =20 [kWh]

kn [kW] kn [kWh]
Peterhead - a 107 172 312 3.40 365 584 1060
a-b 325 370 554 8.11 2635 3002 4495
b-c 863 492 1018 7.83 6759 3850 7973
c-d 1195 395 60 7.59 9075 2996 457
d-e 497 343 34 6.39 3179 2191 216
e-f 295 368 417 4.93 1455 1818 2058
f-g 613 355 132 2.60 1594 923 343
g - Bremerhaven 81 134 272 1.60 129 215 435
Bremerhaven-g 69 110 245 1.60 110 175 392
g-f 240 292 397 2.60 624 759 1033
f-e 426 375 573 4.93 2099 1850 2829
e-d 167 215 241 6.39 1068 1375 1543
d-c 560 644 537 7.59 4256 4893 4079
c-b 867 539 958 7.83 6784 4218 7499
b-a 300 362 510 8.11 2435 2941 4139
a - Peterhead 95 144 282 3.40 324 491 959
Sum 84.93 40630 30019 39023

Table 4: Energy savings for the ship.
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thrust on the rotor than we get from the Vestas V39/600.
This can be seen from the power coefficient, C'p, for the op-
timized wind turbine, which is 0.3144, whereas the power
coefficient for the Vestas V39/600 is only 0.0606 at this
wind speed, resulting in a power output of 600 kW. The
optimized wind turbine gives a higher net forward thrust
than the Vestas V39/600, not because the thrust is lower,
but because the power is much higher. This result may
seem somewhat counterintuitive since the optimized wind
turbine is optimized for maximum F},.; and not maximum
power, but is due to the fact that the optimized wind turbine
is designed for higher apparent wind speeds than the Vestas
V39/600.

For the same wind condition, the heeling moment of the
wingsail rig about the center of gravity of the ship is 4.20
MNm, for a 13.8° angle of attack. An extreme heeling mo-
ment may occur if the wingsail rig is positioned to sail up-
wind, and the wind direction suddenly changes to 20 m/s
apparent beam wind, faster the wingsails are turned, so that
the angle of attack is 90°. In this case, the heeling moment
will be as high as 116 MNm; fortunately only for a short
period of time if the wingsail positioning system is work-
ing properly. Such large heeling moments will never occur
for a wind turbine-powered ship.

The righting moment can be calculated as

Mr‘ighting = PwVQGM sin ¢7 (40)

where p,, is the mass density of water, V = 30600 m? is the
volume displacement, GM = 2.63 m is the distance from the
center of gravity to the metacenter, and ¢ is the heel angle
of the ship. This GM-value accounts for the underwater
hull of the ship only. When the righting moment equals
the heeling moment, the ship will have a steady heel angle
¢. The righing moment curve is shown in Fig. [/ We see
that for heeling moments below 10 MNm, the heel angle is
negligible.

5 CONCLUSION
The 150 m long tanker sailing the route Peterhead - Bre-

merhaven - Peterhead in January at 10 knots will save
24.4% of the total fuel by employing the Vestas V39/600
for auxiliary power generation. By optimizing the wind
turbine design for ship propulsion while keeping the wind
turbine diameter fixed at 39 m, the fuel saving increases to
33.1%. Fitting the ship with wingsails of the same sail area
as the wind turbine rotor disk area results in a fuel saving
of 31.8% at a ship speed of 10 knots. It is seen that the
heeling moment in 20 m/s apparent beam wind is lower for
a ship powerered by a Vestas V39/600 wind turbine than a
wingsail-powered ship, but higher if the ship is powered by
the optimized wind turbine described in this paper. How-
ever, if one considers the risk of the wingsail turning system
failing, a wind turbine-powered ship is preferable with re-
spect to heeling moments. For a ship sailing about half the
wind speed, it is thus seen that an optimized wind turbine-
powered ship is weakly preferable over a wingsail-powered
ship, if energy efficiency and heeling moments are the main
concerns.
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