Study on Performance of a Ship Propeller Using a Composite Material

Tadashi Taketani1, Koyu Kimura1, Satoko Ando1, Koutaku Yamamoto2

1Akishima Laboratories (Mitsui Zosen) Inc, Tokyo, Japan
2Mitsui Engineering & Shipbuilding Co., Ltd, Tokyo, Japan

\textbf{ABSTRACT}

Recently, applying a composite material to ship propellers is considered. A phenomenon of the composite material propeller is to deform elastically while a propeller rotating. Using this phenomenon, the design of a new concept propeller which is a high efficiency and reduces a cavitation by adapting to ship wake is studied.

This present paper will describe the composite propeller performances (propeller characteristics and cavitation performance) under the elastic deformation. The several model propellers with the different Young’s modulas are made. In order to confirm the propeller characteristics and the cavitation performance of these propellers, the model tests are carried out in a cavitation tunnel of Akishima Laboratories (MITSUI ZOSEN) Inc. The thrust and torque of these propellers deforming elastically are measured, and are compared with the propeller characteristics of a propeller made by aluminum not to deform. And in order to evaluate the cavitation, the fluctuating pressure measurement is carried out in a wake flow simulated by a wire-meshed screen method.

Moreover, the composite propeller is analyzed using FSI (Fluid Structure Interaction) analysis. We will present the comparison between the results of FSI analysis and the model tests results.

\textbf{Keywords}

Composite material propeller, Elastic deformation, FSI

\section{1 INTRODUCTION}

Higher fuel costs and pressures to reduce CO\textsubscript{2} emissions are expected to improve ship propulsive performance and fuel efficiency dramatically. Additionally, design changes to improve safety and comfort have increasingly targeted reductions in an accommodation vibration and noise. Propeller cavitations are a major cause of vibrations and noise, and propeller design is expected to move in the direction of minimizing vibration while increasing propulsive performance through higher cavitation performance and efficiency. In recent years, designers have increasingly drawn on composite materials when designing ship propellers to achieve higher efficiency and reduce cavitation through adaptive deformation fitting to non-uniform stern flows.

This paper describes the results of a study of model propellers characterized by different elasticities. The purpose of the study was to investigate the elastic deformation characteristics of each propeller and the cavitation characteristics caused by such deformation. In applying composite materials to ship propellers, we applied the fluid structure interaction method (FSI) to estimate the propeller characteristics accompanying deformation and to compare model test results to calculated values.

\section{2 MODEL TEST SETUP}

\subsection{2.1 Model Propeller}

Model propellers of the same shape but different elasticities were used to evaluate fluid dynamic characteristics and cavitation characteristics attributable to deformation. Table 1 shows the principal particulars for the model propeller; Table 2 describes the properties of these propellers. Dry carbon was the composite material used in this test. We also prepared another test propeller from powders with low Young’s modulus (by sintering nylon powders with a laser). We used an aluminum propeller for comparisons and as a reference standard for deformation-free rigid propellers. Figure 1 shows photographs of each propeller.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
No. of Blade & 5 \\
\hline
Diameter [m] & 0.250 \\
\hline
Boss ratio & 0.1600 \\
\hline
Area ratio & 0.4600 \\
\hline
Pitch ratio & 0.7367 \\
\hline
Skew angle [deg.] & 20.0 \\
\hline
\end{tabular}
\caption{Principal particulars of model propeller}
\end{table}
Table 2 Properties of model propellers

<table>
<thead>
<tr>
<th></th>
<th>Young’s modulus [N/mm²]</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>70,000</td>
<td>0.33</td>
</tr>
<tr>
<td>Dry-Carbon</td>
<td>51,000</td>
<td>0.34</td>
</tr>
<tr>
<td>Nylon Powder</td>
<td>1,240</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Comparison of propellers A (aluminum) and B (dry carbon) were at \(n = 30 \) [sec\(^{-1}\)]. Comparison of propellers A and C (nylon powder) were at \(n = 10 \) [sec\(^{-1}\)], due to strength issues posed by propeller C. Figure 3 show the test results for each propeller. The results indicate lower thrust/torque for propellers B and C compared to propeller A. Propeller C undergoes significant elastic deformation during rotation due to its low Young’s modulus, behavior that significantly reduces thrust. Changes in propeller characteristics for propeller B indicate this propeller also underwent to some extent of deformation. In propeller B, the loss of torque exceeded the loss of thrust. As a result, propeller efficiency increased at the same advance ratio \(J \). This suggests the possibility that, even at the same thrust level, the increase in torque is small, while propeller efficiency will improve by to a extent partially determined by changes in deformation-induced characteristics. However, when loss of thrust reaches a certain point, as observed with propeller C at a certain significant level of deformation, propeller performance declines. Deformation has an optimal level.
4 ELASTIC DEFORMATION TEST

Since the propeller characteristics test indicated to some extent of deformation for propellers B and C during rotation, an elastic deformation test was carried out. The propeller blade deformation was observed visually within the plane of propeller rotation by taking instantaneous pictures from points orthogonal to the propeller shaft, matching the propeller revolutions and flash timing, as is commonly done in cavitation tests. The propeller revolutions were set at \(n = 10 \frac{\text{sec}}{\text{sec}} \) for propeller C and at \(n = 30 \frac{\text{sec}}{\text{sec}} \) for propeller B, as in the propeller characteristics test. Table 3 gives the visual inspection results for propeller tip deformation. Figure 4 shows before/after deformation pictures of the propellers (under high load: \(J = 0.3 \)).

The measurements indicated blade-tip deformations of 3-5 mm in propeller C and blade-tip deformations of 1-2 mm in propeller B. These deformations work as a forward rake. As blade thickness increases from tip to root, the deformation extent increases from root to tip. Deformation at the tip was assumed to account for the major share of deformation effects.

5 CAVITATION TEST

A wire-meshed screen (Figure 5) was arranged in the upstream portion of the measuring section of cavitation tunnel and a non-uniform flow simulating stern wake distribution was generated. In this wake distribution the propeller was allowed to rotate, and the deformation-induced cavitation changes observed. Figure 6 compares cavitation at the same number of propeller revolutions (25.5 sec\(^{-1}\)). Cavitation number \(\sigma_n \) follows equation (5), where \(P_o \) is a static pressure at propeller position, \(P_v \) is a vapor pressure, and \(\sigma_n = 0.3 \).

\[
\sigma_n = \frac{P_o - P_v}{\rho n^2 D^2} \quad (5)
\]
6 FSI ANALYSIS

Described below is a simulation based on FSI (the fluid structure interaction method). FSI is an analytical tool integrating fluid analysis and structural analysis to estimate the fluid characteristics of an object that deforms in a fluid. In this study, STAR-CCM+ Ver.7.02 was used for fluid analysis and ABAQUS Ver.6.11 was used for structural analysis. Calculation condition assumed J = 0.3, where propeller loads in the propeller characteristics test were greatest. This analysis was performed by the 2-way coupled method (Figure 8).

The analysis proceeded as follows:
1) Apply fluid analysis to calculate pressure distributions at the blade surface.
2) Use structural analysis data as load conditions.
3) Calculate deformation by structural analysis.
4) Morph the fluid analysis mesh based on deformation data.
5) Return to step 1) and perform fluid analysis.

Steps 1–5 were performed iteratively until residual errors in deformation and propeller characteristics were negligible. Figure 9 shows the calculation domains and analysis mesh for the fluid analysis. Since a propeller rotating in a uniform flow has n-fold symmetries equal to the number of propeller blades, calculation was performed with a steady analysis for one blade based on cyclic boundary conditions. In the structural analysis, the mesh was set in a solid model for one blade and was performed with a static analysis under constraining the root of the propeller blade to the propeller boss.
Figure 10 shows the propeller characteristics and the maximum deformation at the blade tip along the axis of propeller thrust at each morphing (coupling) of the fluid analysis mesh. Although propellers B and C had different elasticities and different deformations at the blade tip, the parameters converged after approximately the 4th coupling.

![Figure 10](image)

Figure 11 shows the deformation calculation results obtained after the 2-way coupling converges. Both propellers B and C exhibit deformation at the blade tip along the axis of thrust(+), the same results obtained in the model test.

![Figure 11](image)

Figure 12 compares changes in propeller surface pressure distributions before and after deformation. In both propellers B and C, the reduction in pressure at the blade surface is weakened around the blade tip. This effect reduces cavitation volume. The results match those obtained in the cavitation test.

![Figure 12](image)

Figure 13 compares the results of model test and calculation for propeller characteristics and deformation. The calculated deformation means maximum deformation along the rotation axis at the blade tip. This figure shows lower thrust/torque after deformation in propeller B but improved propeller efficiency. These results are consistent with the model test results, and estimates of the extent of deformation proved accurate. For propeller C, the deformation itself can be estimated relatively well, but the estimation accuracy of the propeller characteristics after deformation is not sufficient. Where the whole propeller deforms significantly, accurate estimates of the deformation of the whole propeller remain problematic, an issue that remains to be solved.
7 CONCLUSIONS

Using model propellers of different elasticities, changes in propeller characteristics, deformation, and cavitation were observed in a model test.

Generally speaking, deformation reduced propeller thrust/torque. Propeller efficiency increased in cases where this deformation was small, since the loss of torque was greater than the loss in thrust. At a certain point, propeller efficiency begins to decline with greater deformation, suggesting an optimal level of deformation.

Elastic deformation was dominant at the blade tip. This deformation occurred along the direction of thrust and worked as a forward rake.

The cavitation generated after deformation indicated that such deformation reduced loads at the blade tip and affected pitch angles. This deformation is expected a reduction of pressure fluctuations.

In FSI analysis, using the 2-way coupled analysis, calculations results and model test results were compared. In the case of small deformations, analysis results were consistent with changes in propeller characteristics. For larger deformations, analysis proved relatively inaccurate in estimating the deformation of the entire propeller. Future efforts should target improvements in this aspect.

REFERENCES

