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ABSTRACT

The paper presents results for the cavitation simulations of
the Potsdam Propeller Test Case (i.e. test cases 2.3.x of
the SMP’11 Workshop). Three requested cases at different
cavitation numbers and thrust coefficients are computed
using the in-house viscous simulation procedure FreSCo+.
All simulations were performed using an URANS ap-
proach with a k−ω turbulence model. Cavitating-flow
results are mostly obtained from a traditional VOF-based
Euler-Euler approach to capture the two-phase flow phe-
nomena. Examples included reveal, that such approaches
should be used carefully, as results may strongly depend
on applied model parameters. Accordingly, a more sophis-
ticated Euler-Lagrange approach to cavitation modeling is
presented and some preliminary results are shown.
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1 INTRODUCTION

Cavitation is known as the formation and subsequent rapid
collapse of vapor bubbles inside liquid streams. The pro-
cess is primarily governed by the deviation of the liquid
pressure from the vapour pressure. In marine applications,
cavitation has various undesirable effects on propellers and
rudders, such as pressure-fluctuation induced noise and vi-
bration, erosion and performance deterioration.

Typically, a VOF-based Euler-Euler approach which con-
siders the flow as a dynamic liquid/vapour mixture is used
for simulations of cavitating marine-engineering flows.
The two componentes of the mixture share the same veloc-
ity field which is described by the Navier-Stokes equations.
The local vapour-volume fraction is computed from an ad-
ditional transport equation. The latter employs a source
term, describing the mass transfer between the liquid and
the vapor phase derived from a simplified Rayleigh-Plesset
equation.

The Euler-Euler concept allows two-way coupling between
liquid and vapor phase and may be quite efficient for some
flows. Since it doesn’t take into account inhomogeneous
water properties and is restricted to simplified dynamics at
no slip between vapour-bubbles and liquid, it often requires
questionable, case-dependent calibration of model param-
eters.

Another approach to cavitation modelling refers to the
Euler-Lagrange approach. Here the vapour-volume frac-
tion is obtained by simulating the evolution of individ-
ual bubbles, composing a discrete phase (Abdel-Maksoud
et al., 2010). The dynamics of these bubbles is computed
using Newtonian equations of motion coupled with the
Rayleigh-Plesset equation for the description of the bub-
ble size. As such approach considers each bubble individu-
ally, it allows to take into account various forces, acting on
the bubble, as well as bubble-boundary interactions, slip-
flow effects and inhomogeneous or transient water quality
aspects, i.e. bubbles spectra of the approach flow and the
local non-condensable gas content.

In this paper cavitating propeller flow was studied for the
Potsdam Propeller Test Case (PPTC) in the framework of
the Second International Symposium on Marine Propulsors
(SMP’11) workshop. In addition to the required data sub-
mitted for validation, here we present more details on spe-
cific issues such as grid resolution influence, model param-
eters study, noncavitating/cavitation flows comparison and
some preliminary results for the Euler-Lagrange approach.

2 NUMERICAL METHOD

2.1 FreSCo+

FreSCo+ is a spin-off of FreSCo, a joint development of
Hamburg University of Technology (TUHH), Hamburgis-
che Schiffbau-Versuchsanstalt (HSVA) and Maritime Re-
search Institute Netherlands (MARIN) (Rung et al., 2009).
The original code was developed within the scope of the
EU initiative VIRTUE. The procedure uses a segregated al-
gorithm based on the strong conservation form of the mo-
mentum equations. It employs a cell-centered, co-located
storage arrangement for all transport properties. Structured
and unstructured grids, based on arbitrary polyhedral cells
or hanging nodes, can be used.

The implicit numerical approximation is second-order ac-
curate in space and time. Integrals are approximated us-
ing the conventional mid-point rule. The solution is iter-
ated to convergence using a pressure-correction SIMPLE
scheme. Various turbulence-closure models are available
with respect to statistical (RANS) or scale-resolving (LES,
DES) approaches.

Since the data structure is generally unstructured, suitable
pre-conditioned iterative sparse-matrix solvers for sym-
metric and non-symmetric systems (e.g. GMRES, BiCG,



QMR, CGS or BiCGStab) can be employed. The algo-
rithm is parallelised using a domain-decomposition tech-
nique based on a Single Program Multiple Data (SPMD)
message-passing model, i.e. each process runs the same
program on its own subset of data. Inter-processor com-
munication employs the MPI communications protocol.
Load balancing is achieved using the ParMETIS partition-
ing software.

Cavitation is modelled using either mass-transfer mod-
els (Euler-Euler) or two-way coupled Euler-Lagrange ap-
proaches.

2.2 Govering equations

The fluid mixture of an incompressible liquid and bubbles
containing vapour and homogeneous gas is described by
the standard Navier-Stokes equations under the assumption
of isothermal state:
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The mixture density ρ and mixture viscosity µ are com-
puted as a sum of partial densities and viscosities of the
fluid (l) and vapour (v):

ρ = αρv +(1−α)ρl

µ = αµv +(1−α)µl (3)

Here α is the vapour-volume fraction defined as the ratio
between the vapor volume and the total volume of a con-
trol volume

α =
Vv

Vv +Vl
. (4)

A control volume (CV) filled with fluid yields α = 0.0, a
control volume filled with vapor α = 1.0, respectively. For
α ∈]0.0,1.0[ the CV is filled with a mixture of fluid and
vapor. Values out of this range describe non-realisable sit-
uations.

Euler-Euler and Euler-Lagrange approaches to α-
computations are described below.

Within Euler-Euler approach, the vapour-volume fraction
is computed from a transport equation with a source term
Scav:

∂α

∂ t
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The source term can be approximated via several empriri-
cal models. The present work employs the model reported
by Zwart(Zwart et al., 2004)
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The Zwart model inheres two empirical constants Fvap and
Fcond which allow to distinguish between vaporisation and
condensation. Two additional model paramters are the
initial nucleation-site volume fraction αnuc and the corre-
sponding initial nucleation-site radius R0. Mind that these
parameters are assigned to constant values and do not vary
in space or time.

Within Euler-Lagrange approach vapour-volume fraction
is defined by mapping bubbles on the Eulerian mixture
field. The local vapour volume in a cell is computed as a
sum of volumes of individual bubbles, residing in this cell.
An interpolation procedure is applied to get smooth field
which is limited within physical bounds.

Considering a bubble as a small rigid sphere, its trajectory
can be described by the equation of motion (Maxey and
Riley, 1983; Oweis, 2005; Abdel-Maksoud et al., 2010):

dx
dt

= v; mb
dv
dt

= (mb−m f )g+m f
Du
Dt
−

− 1
2

m f

(
dv
dt
− Du

Dt

)
+FD +FL +FV (7)

where mb is the bubble mass, m f is the equivalent mass of
the carrier phase, v - bubble velocity, u - carrier phase ve-
locity at the center of the bubble. The first three terms on
the right-hand side of (7) are the forces due to buoyancy,
fluid acceleration and added mass (inertia). FD,FL,FV de-
note to the drag, lift, and volume variation forces.

While the equation of motion (7) provides the bubble’s tra-
jectory, the Rayleigh-Plesset equation – including a term
accounting for the effect of the slip velocity between the
bubble and the carrier phase – determines the time-varying
radius of the bubble (Hsiao et al., 2000):
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3 COMPUTATIONAL SET-UP

3.1 Propeller Geometry and computational do-
main

A five-blade controllable pitch propeller is proposed for the
workshop. The propeller diameter refers to D=250mm. It
features a chord length at r/R=0.7 of c/D= 0.417, a pitch ra-
tio at r/R=0.7 of 1.635, a hub diameter ratio of 0.3, an area
ratio of 0.779 and skew angle of 18.8°. For the simplicity
of mesh generation the gap between hub and propeller is
closed.

The whole 5-blade propeller is embedded in a cylindrical
domain. The radius of the domain denotes 1.34 D, provid-
ing the same cross-sectional area size as the experiment.
The computational domain covers 2D upstream of the pro-
peller and 4D in downstream direction.

3.2 Computational mesh

Two non-conformal body-fitted fully hexahedral unstruc-
tured meshes have been generated using NUMECA HEX-
PRESS™software. The first mesh contains 4.7·106 cells.



It utilizes local refinement in the tip vortex region (hollow
cylinder) and downstream the hub (Figure 1). In order to
assess the blade resolution dependency, one of the blades is
refined better than the others. The grid is built for the use
with wall functions with y+ ≈ 60.

The second mesh features locally refined cells at the loca-
tion of the tip vortex. In order to reduce mesh size this
refinement was applied only for one blade. Figure 2 shows
the refinement area. The typical cell dimension in this re-
gion is 0.5x0.5x0.5 mm. The total size of the second grid
is 9.4·106 cells.

Figure 1: 4.7·106 cells mesh

Figure 2: 9.4·106 cells mesh. Refinement region

3.3 Numerical settings

For all computed cases unsteady RANS simulations with
the Wilcox k−ω turbulence model (Wilcox, 2004) have
been performed. The QUICK convection scheme without
limitations is used for all transport properties. The time
step corresponded to 1°of the propeller rotation and the re-
sulting Courant number is Co < 1. The simulations are
performed in an inertial frame of reference. Computational
domain is rotating at a given revolution rate.

As already outlined before, the Zwart model is used to de-
scribe the liquid/vapour mass transfer. The empirical co-
efficients are assigned to the literature-reported values of
Zwart (Zwart et al., 2004). Initial nuclei parameters follow
from αnuc = 1. 10−6 and R0 = 5·10−4 m. Notice that the
values for Fvap and Fcond were deliberately varied for the
simulations.

In general, three propeller revolutions were required to
obtain stable results. Cavitating cases started from non-
cavitating results after one propeller revolution.

3.4 Boundary contitions

A uniform velocity was used at the inflow boundary. The
value was adjusted so that non-cavitating propeller have
the same thrust coefficient as in the experiments. Table 1
presents inlet velocity values used in simulations.

Table 1: Inlet velocities

Case Vinlet measured [m/s] Vinlet adjusted [m/s]
2.3.1 6.37 6.6
2.3.2 7.93 8.1
2.3.3 8.8 9.03

At the outlet boundary a uniform pressure was specified
matching the given cavitation number for each case. No-
slip walls with wall functions were set at the hub and pro-
peller blades. A slip-wall boundary condition was em-
ployed along the outer circumference.

4 RESULTS

4.1 Tip vortex resolution

Using the mesh of 4.7·106 cells shown in Figure 1, no cav-
itation was observed for all of the cases in the tip vortex
region. The resolved vortex is not strong enough to cause
the required pressure reduction in it’s core which would
initiate the onset of cavitation. Therefore, the initial mesh
has been modified by refining the tip vortex region for one
blade and another mesh of 9.4·106 cells has been gener-
ated. Figure 3 shows comparisons of vorticity iso-surfaces
obtained with both grids. As depicted by the figure the tip
vortex is resolved much better for the finer mesh. As il-
lustrated in Figure 4, cavitation is now seen near the blade
featuring the refined tip-vortex region.

Tip-vortex cavitation itself has a limited influence on the
propeller performance, but in some cases it is a starting
point for the sheet cavitation on the blade. Thus it may be
important to be able to resolve this kind of cavitation.



Figure 3: Case 2.3.1. VorticityX = 1000 isosurfaces. 4.7·106 (left) and 9.4·106 (right) cells meshes

Figure 4: Case 2.3.1. Ccav = 0.2 isosurface for 9.4·106 cells mesh

4.2 Comparisons of non-cavitating and cavitat-
ing results

Figures 5 and 6 show comparisons between corresponding
results for non-cavitating and cavitating simulations. One
can observe that cavitation occurs in regions with pressure
below vapor pressure for the non-cavitating case (see Fig-
ure 7). The pressure in this regions gets closer to vapor
pressure for the cavitating case, i.e. pressure increases in
the latter case. It can be also seen that shear stresses are re-
duced during the cavitation process which might be related
to local changes in mixture properties in cavitation regions.

4.3 Cavitation model parameter influence

The originally suggested in (Zwart et al., 2004) parameters
in the expression for the vaporisation/condensation source
term (6) are Fvap=50, Fcond=0.01. From our previous expe-
rience with 2D foils cavitation simulations, results may be
quite sensitive to the choise of the model parameters.

A parameter study has been performed to investigate the

respective coefficient influence of Fvap and Fcond for case
2.3.2. Three different parameters sets as displayed in Ta-
ble 3 were used. Mind that they are well within the range
of recommended values. The table reveals, that the com-
puted thrust coefficients differ substantially from the non-
cavitating case – from 50% reduction for high values to
virtually no changes for small values – depending on the
choice of coefficients. The result can be attributed to dif-
ferent predictions of the cavitation volume, which is clearly
seen from Figures 8, 9 and 10.

In case of high parameter values, an excessive vapor vol-
ume is produced in the propeller regime. It displaces the
primary flow and is convected over a large portion of the
domain downstream of the propeller which is of course un-
physical (but the solution is converged). In conjunction
with smaller values cavitation exist only in regions near the
propeller hub and tip and with the smallest values cavita-
tion region gets very small.

This study shows that Euler-Euler cavitation models may
reqiure case-dependend calibration of constants which
might be inappropriable for industrial uses. The conclu-
sion applies not only to the employed Zwart model but also
any other mass-transfer model of this type.

Table 2: Zwart model (Zwart et al., 2004) parameter study

Fvap/Fcond KT
25/0.005 0.137
5/0.005 0.211
0.1/0.001 0.242
non-cavitating 0.245
measurements

4.4 Euler-Lagrange model results

Initial simulations of for case 2.3.1 have been performed
with the Euler-Lagrange model. A specified number of nu-



Figure 5: Case 2.3.1. Suction side pressure field, 9.4·106 cells mesh. Non-cavitating (left) and cavitating (right) propeller

Figure 6: Case 2.3.1. Shear stresses on the suction side. 9.4·106 cells mesh. Non-cavitating (left) and cavitating (right) propeller

Figure 7: Case 2.3.1. Ccav = 0.2 isosurface for 9.4·106 cells mesh



Figure 8: Case 2.3.2. Ccav = 0.2 isosurface for 4.7·106 cells mesh. Fvap=25, Fcond = 0.005

Figure 9: Case 2.3.2. Ccav = 0.2 isosurface for 4.7·106 cells mesh. Fvap=5, Fcond = 0.005

Figure 10: Case 2.3.2. Ccav = 0.2 isosurface for 4.7·106 cells mesh- Fvap=0.1, Fcond = 0.001



clei (100 bubbles of 100 micron diameter) are started each
Eulerian time step at a given position upstream the pro-
peller. Ideally, the initial bubble distribution should depend
on the water quality and flow conditions, but at first steps
it is chosen arbitrary here. The starting position is chosen
such that injected bubbles could get into the low pressure
tip region. To consider sheet cavitation near the hub, more
bubbles must be started upstream the propeller.

When a bubble travels through the low-pressure region, it
starts to grow accordingly to the Rayleigh-Plesset equation
(8). Figure 11 displays a bubble distribution in the tip re-
gion. Some cavitation already occurs in the tip vortex, al-
though for this mesh Euler-Euler model revealed no cavi-
tation.

It should be mentioned, that simulation with Euler-
Lagrange model are quite time-consuming. The study was
supported by high-performance computing hardware and
required the introduction of hybrid MPI/OpenMP paralleli-
sation strategies.

Figure 11: Euler-Lagrange simulations. 4.7·106 cells Euler mesh,
10000 bubbles

4.5 Open-water tests

In addition to cavitating cases, open water curve has case
been computed. Another mesh of 4·106 cells similar to
the coarser mesh for cavitating simulations was generat-
ing taking into account different hub geometry (Figure 12)
and domain size (with raduis of four propeller diameters
D, 4D upstream of the propeller and 10D in downstream
direction). The computed data is given in Table. Figure 13
shows the open-water diagramm.

Table 3: Open-water test case results

J KT 10KQ η0
0.6 0.612 1.407 0.415
0.8 0.501 1.203 0.530
1.0 0.393 0.999 0.626
1.2 0.279 0.780 0.683
1.4 0.168 0.561 0.667

Figure 12: 4·106 cells mesh used for open-water simulations
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Figure 13: Open-water diagramm

CONCLUSIONS

Results for the cavitation and open-water simulations of
the Potsdam Propeller Test Case (test cases 2.1 and 2.3 of
the SMP’11 Workshop) are presented in the paper. It is
shown that to correctly resolve tip vortex cavitation quite
fine mesh is required in this region. Cavitation results ob-
tained by the Euler-Euler model show significant depen-
dency on it’s internal constants. An alternative, Euler-
Lagrange approach is suggested and some preliminary re-
sults are shown. Further work on sheet cavitation simula-
tions with Euler-Lagrange model is planned.
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T. Rung, K. Wöckner, M. Manzke, J. Brunswig, C. Ulrich,
and A. Stück. Challenges and Perspectives for Maritime
CFD Applications. Jahrbuch der Schiffbautechnischen
Gesellschaft, 103. Band, 2009.

D.C. Wilcox. Turbulence Modeling for CFD. DCW Indus-
tries, Inc., 2 edition, 2004.

P.J. Zwart, A.G. Gerber, and T. Belamri. A two phase flow
model for predicting cavitation dynamics. In ICMF
2004 International Conference on Multiphase Flow,
2004. Yokohama, Japan, May 30 – June 3, 2004.


